Quantitative Finance Formulas

Interest accumulation: $\mathrm{Fv}=\mathrm{Pv}+\mathrm{I}$

Simple interest: $\mathrm{Fv}=\mathrm{Pv}(1+\mathrm{i} \cdot \mathrm{t})$
Compound interest: $\mathrm{Fv}=\mathrm{Pv}(1+i)^{\mathrm{t}}$
Simple discount: $\quad D=F v \cdot d \cdot t$

I=Interest; P=Principal; i=interest rate
$\mathrm{t}=$ number of periods
Effective rates conversion:

$$
i_{L}=\left(1+i_{S}\right)^{L / S}-1 ; i_{S}=\left(1+i_{L}\right)^{s / L}-1
$$

Relation between nominal and effective rates:
$i_{A}(m)=m\left[\left(1+i_{A}\right)^{1 / m}-1\right]$
Continuous compounding:
Nominal rate: $\delta=\ln \left(1+\mathrm{i}_{\mathrm{A}}\right)$
Future Value: $\mathrm{S}=\mathrm{Pe}^{\delta \mathrm{t}}$
Present Value: $\mathrm{P}=\mathrm{Se}^{-\delta t}$
Present value of a n payment annuity immediate of
1 per period: $a_{\bar{n} \mid i}=\frac{1-(1+i)^{-n}}{i}$
Accumulated value of a n payment annuity immediate of 1 per period:
$s_{\bar{n} \mid i}=\frac{(1+i)^{n}-1}{i}=a_{\bar{n} \mid i}(1+i)^{n}$
Present value of annuity due:

$$
\ddot{a}_{\bar{n} \mid i}=1+a_{\overline{n-1} \mid i}=a_{\bar{n} \mid i}(1+i)
$$

Accumulated value of annuity due:

$$
\ddot{s}_{\bar{n} \mid i}=s_{\bar{n} \mid i}(1+i)
$$

Present value of deferred annuity:

$$
{ }_{k \mid} a_{\bar{n} \mid i}=a_{\bar{n} \mid i}(1+i)^{-k}
$$

Accumulated value of deferred annuity:

$$
k \mid S_{\bar{n} \mid i}=S_{\bar{n} \mid i}
$$

Forborne annuities
$F V=R . S_{n \mid i}(1+i)^{p}$
p- number of intervals between the last payment and FV.
Present value of perpetuity immediate: $a_{\bar{\infty} \mid i}=\frac{1}{i}$
Increasing arithmetic progression:

$$
\begin{aligned}
& (C-h) a_{\bar{n} \mid i}+h(I a)_{\bar{n} \mid i} ; \quad(I a)_{\bar{n} \mid i}= \\
& \frac{\ddot{a}_{\bar{n} \mid i}-\mathrm{n}(1+i)^{-n}}{i}
\end{aligned}
$$

Decreasing arithmetic progression:

$$
(D-h) a_{\bar{n} \mid i}+h(D a)_{\bar{n} \mid i} ; \quad(D a)_{\bar{n} \mid i}=\frac{n-a_{\bar{n} \mid i}}{i}
$$

Geometric progression: $\quad C \frac{1-r^{n}(1+i)^{-n}}{1+i-r}$
$\mathrm{M}^{\text {thly }}$ payable annuity:

$$
a_{\bar{n} \mid i}^{(m)}=a_{\bar{n} \mid i} \frac{i}{i^{(m)}} ; \quad s_{\bar{n} \mid i}^{(m)}=s_{\bar{n} \mid i} \frac{i}{i^{(m)}}
$$

Leasing:
Lease payment=PMT + I
$\mathrm{Pv}=\mathrm{PMT} a_{\bar{n} \mid i}, \mathrm{I}=\mathrm{RV} \cdot i$
Leasing (for an annuity immediate):
$V c=E+R a_{\bar{n} \mid i}+R V(1+i)^{-n}$, where
Vc: value of the contract; E: entry value
RV = residual value; $P M T=$ periodic payment
Linear Interpolation:
$R n=R 1+[(R 2-R 1) /(t 2-t 1)] .(t n-t 1)$

Rn - unknown rate
R1 and R2 - two known

